Article 8318

Title of the article

THE EFFECT OF PACED BREATHING ON RECURRENCE QUANTIFICATION ANALYSIS OF HEART RATE 

Authors

Dimitriev Dmitriy Alekseevich, Doctor of medical sciences, professor, sub-department of biology and basic medical knowledge, Chuvash State Pedagogical University named after I. Ya. Yakovlev (38 K. Marx street, Cheboksary, Russia),
E-mail: rothman68@mail.ru
Remizova Nadezhda Mikhaylovna, Applicant, sub-department of biology and basic medical knowledge, Chuvash State Pedagogical University named after I. Ya. Yakovlev (38 K. Marx street, Cheboksary, Russia), E-mail: ndanglanrn@gmail.com
Dimitriev Aleksey Dimitrievich, Doctor of biological sciences, professor, leading researcher, Department of Research, Cheboksary Cooperative Institute (branch) of Russian Сooperative University of the Centrosoyuz of the Russian Federation (24 Gorky avenue, Cheboksary, Russia), E-mail: adimitriev@rucoop.ru 

Index UDK

612.172.2:612.2 

DOI

10.21685/2307-9150-2018-3-8 

Abstract

Background. Recurrence is an essential feature of many physiological systems and recurrence plot (RP) is a graphical representation of such recurrences. The aim of this study is to assess the effects of paced breathing on RP measuresof heart rate
variability (HRV) in healthy young females.
Materials and methods. We investigated 29 young healthy femalesaged 20,4 ± ± 0,2 years (range: 19–24 years). Participants breathed spontaneously and following the respiratory pacer for 5 min at each of 5 frequencies: 6,5; 6; 5,5; 5; 4,5 breaths/ min. Five-minute heart rate variability time series were obtained during spontaneous and paced breathing from each participant. HRV was analyzed using standard linear time and frequency domain analysis and recurrence plot analysis.
Results. Linear indexes (SDNN, LF) were significantly increased during paced breathing. Paced breathing causes significant increase of RP measures REC, DET, lmean, lmax, ShanEn. Recurrence indexes showed that the heart rate dynamics during paced breathing are different from free breathing, suggesting loss of complexity of heart rate autonomic regulation system.
Conclusions. Recurrence quantification analysis of HRV is sensitive to paced breath and might therefore be suited to assess interactions between cardiovascular system and respiration. The loss of HRV complexity might reflect an increased regularity of HR oscillations caused by paced breathing. Thus, RP has potential to provide supplementary information about the dynamics in heart rate regulation. 

Key words

respiratory sinus arrhythmia, heart rate variability, recurrence quantification analysis 

 

 Download PDF

References

1. Voss A., Schulz S., Schroeder R., Baumert M., Caminal P. Philosophical Transactions of the Royal Society of London A: Mathematical, Physical and Engineering Sciences. 2009, no. 367 (1887), pp. 277–296.
2. Hejjel L., Gal I. Acta Physiologica Hungarica. 2001, no. 88 (3-4), pp. 219–230.
3. Raab C., Wessel N., Schirdewan A., Kurths J. Physical Review E. 2006, no. 73 (4), p. 041907.
4. Marwan N., Wessel N., Meyerfeldt U., Schirdewan A., Kurths J. Physical Review E. 2002, no. 66 (2), p. 026702.
5. Zbilut J. P., Webber C. L. The European Physical Journal Special Topics. 2008, no. 164 (1), pp. 55–65.
6. Kiselev V. B. Nauchno-tekhnicheskiy vestnik [Scientific and technical bulletin]. 2006, no. 29, pp. 136–140.
7. Eckmann J.-P., Kamphorst S. O., Ruelle D. Europhysics Letters. 1987, no. 5, pp. 973–977.
8. Berntson G. G., Cacioppo J. T., Quigley K. S. Psychophysiology. 1993, no. 30 (2), pp. 83–96.
9. Agadzhanyan N. A., Kupriyanov S. V. Rossiyskiy fiziologicheskiy zhurnal imeni I. M. Sechenova [Russian physiological journal named after I. M. Sechenov]. 2008, vol. 94, no. 6, pp. 661–669.
10. Yasuma F., Hayano J. I. Chest. 2004, no. 125 (2), pp. 683–690.
11. Vaschillo E. G., Vaschillo B., Lehrer R. M. Applied psychophysiology and biofeedback. 2006, vol. 31, no. 2, p. 129.
12. Donner R. V., Zou Y., Donges J. F., Marwan N., Kurths J. New Journal of Physics. 2010, no. 12 (3), p. 033025.
13. Schlenker J., Socha V., Riedlbauchová L., Nedělka T., Schlenker A., Potočková V., Malá Š., Kutilek R. Biomedical Signal Processing and Control. 2016, vol. 25, p. 1.
14. Laborde S., Mosley E., Thayer J. F. Frontiers in psychology. 2017, no. 8, p. 213.
15. Rottenberg J. Biological psychology. 2007, no. 74 (2), pp. 200–211.
16. Eddie D., Vaschillo E., Vaschillo V., Lehrer R. Addiction research & theory. 2015, no. 23 (4), pp. 266–272.
17. Acharya U. R., Faust O., Sree V., Swapna G., Martis R. J., Kadri N. A., Suri J. S. Computer methods and programs in biomedicine. 2014, no. 113 (1), pp. 55–68.
18. Melillo P., Bracale M., Pecchia L. Biomedical engineering online. 2011, no. 10 (1), p. 96.
19. Sarkar A., Barat R. Fractals. 2008, no. 16 (03), pp. 199–208.
20. González H., Infante O., Pérez-Grovas N., Jose M. V., Lerma S. Medical engineering & physics. 2013, no. 35 (2), pp. 178–187.
21. Javorka M., Turianikova Z., Tonhajzerova I., Javorka K., Baumert M. Physiological measurement. 2008, no. 30 (1), p. 29.
22. Dabire H., Mestivier D., Jarnet J., Safar M. E., Chau N. P. American Journal of Physiology-Heart and Circulatory Physiology. 1998, no. 275 (4), pp. 1290–1297.
23. Cepeda F. X., Lapointe M., Tan C. O., Taylor J. A. Autonomic Neuroscience. 2018, no. 213, pp. 1–7. 

 

Дата создания: 19.03.2019 10:50
Дата обновления: 19.03.2019 14:09